首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29400篇
  免费   1307篇
  国内免费   2091篇
测绘学   1789篇
大气科学   3063篇
地球物理   5906篇
地质学   14172篇
海洋学   1595篇
天文学   1776篇
综合类   2669篇
自然地理   1828篇
  2024年   8篇
  2023年   78篇
  2022年   236篇
  2021年   257篇
  2020年   207篇
  2019年   262篇
  2018年   4984篇
  2017年   4223篇
  2016年   2838篇
  2015年   493篇
  2014年   360篇
  2013年   344篇
  2012年   1243篇
  2011年   2961篇
  2010年   2278篇
  2009年   2560篇
  2008年   2114篇
  2007年   2591篇
  2006年   254篇
  2005年   394篇
  2004年   575篇
  2003年   584篇
  2002年   497篇
  2001年   318篇
  2000年   289篇
  1999年   273篇
  1998年   240篇
  1997年   195篇
  1996年   167篇
  1995年   156篇
  1994年   148篇
  1993年   123篇
  1992年   108篇
  1991年   79篇
  1990年   63篇
  1989年   54篇
  1988年   45篇
  1987年   32篇
  1986年   18篇
  1985年   22篇
  1984年   15篇
  1983年   17篇
  1982年   9篇
  1981年   31篇
  1980年   24篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   7篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Composite analysis was conducted using high-frequency radar data obtained during 2006–2015 in order to gain a better understanding of the current field in the Ariake Sea. The seasonally averaged surface current in the Ariake Sea was directed southward in all seasons, except around river mouths during summer. Heavy rainfall enhanced the outflow along the eastern coast of the Shimabara Peninsula from Isahaya Bay to the southern area 2–5 days after heavy rainfall. Spring–neap differences were clearly seen in the southward current along the Shimabara Peninsula. Interannual variation in the M2 tidal current amplitude was synchronized with the lunar nodal cycle.  相似文献   
82.
深海沉积物中有孔虫壳体的微量元素、同位素测试技术已较为成熟,而河口近海沉积物中有孔虫壳体元素微区测试却鲜有报道。本文报道了一种利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析法测试取自长江口外沉积物中的有孔虫壳体元素/钙比值的技术,研究了氦气载气流量、能量密度、束斑大小、激光剥蚀频率等参数对测试结果的影响,优化了活体有孔虫原位分析方法。应用确定的测试条件对2016年7月取自长江口外的底栖有孔虫优美花朵虫样品(Florilus decors)进行测试,发现Mg、Sr等元素/钙比值在壳体不同位置上无显著差异,而Mn的数据较为离散,可能与有孔虫生长过程中经历的水环境及其变化有关。  相似文献   
83.
Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using \(q\)-nonextensive distribution function for the electrons and assuming ions to be cold \(T_{i}< T_{e}\). It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The \(q\)-nonextensivity parameter \(q\) and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the \(F\)-region ionosphere for illustration.  相似文献   
84.
Shallow water flow (SWF), a disastrous geohazard in the continental margin, has threatened deepwater drilling operations. Under overpressure conditions, continual flow delivering unconsolidated sands upward in the shallow layer below the seafloor may cause large and long-lasting uncontrolled flows; these flows may lead to control problems and cause well damage and foundation failure. Eruptions from over-pressured sands may result in seafloor craters, mounds, and cracks. Detailed studies of 2D/3D seismic data from a slope basin of the South China Sea (SCS) indicated the potential presence of SWF. It is commonly characterized by lower elastic impedance, a higher Vp/Vs ratio, and a higher Poisson’s ratio than that for the surrounding sediments. Analysis of geological data indicated the SWF zone originated from a deepwater channel system with gas bearing over-pressured fluid flow and a high sedimentation rate. We proposed a fluid flow model for SWF that clearly identifies its stress and pressure changes. The rupture of previous SWF zones caused the fluid flow that occurred in the Baiyun Sag of the northern SCS.  相似文献   
85.
Biomass in karst terrain has rarely been measured because the steep mountainous limestone terrain has limited the ability to sample woody plants.Satellite observation, especially at high spatial resolution, is an important surrogate for the quantification of the biomass of karst forests and shrublands. In this study, an artificial neural network(ANN) model was built using Pléiades satellite imagery and field biomass measurements to estimate the aboveground biomass(AGB) in the Houzhai River Watershed, which is a typical plateau karst basin in Central Guizhou Province, Southwestern China. A back-propagation ANN model was also developed.Seven vegetation indices, two spectral bands of Pléiades imagery, one geomorphological parameter,and land use/land cover were selected as model inputs. AGB was chosen as an output. The AGB estimated by the allometric functions in 78 quadrats was utilized as training data(54 quadrats, 70%),validation data(12 quadrats, 15%), and testing data(12 quadrats, 15%). Data-model comparison showed that the ANN model performed well with an absolute root mean square error of 11.85 t/ha, which was 9.88%of the average AGB. Based on the newly developed ANN model, an AGB map of the Houzhai River Watershed was produced. The average predicted AGB of the secondary evergreen and deciduous broadleaved mixed forest, which is the dominant forest type in the watershed, was 120.57 t/ha. The average AGBs of the large distributed shrubland,tussock, and farmland were 38.27, 9.76, and 11.69 t/ha, respectively. The spatial distribution pattern ofthe AGB estimated by the new ANN model in the karst basin was consistent with that of the field investigation. The model can be used to estimate the regional AGB of karst landscapes that are distributed widely over the Yun-Gui Plateau.  相似文献   
86.
This paper examines the small-scale solar wind turbulence driven in view of the Alfvén waves subjected to ponderomotive nonlinearity. Filamentation instability is known to take place for the case of dispersive Alfvén wave (DAW) propagating parallel to the ambient magnetic field. The ponderomotive force associated with DAW is responsible for wave localization and these webs of filaments become more intense and irregular as one proceeds along the spatial domain. The ponderomotive force associated with pump changes with pump parameters giving rise to different evolution patterns. This paper studies in detail the nonlinear evolution of filamentation instability introduced by dispersive Alfven waves (DAWs) which becomes dispersive on account of the finite frequency of DAW i.e., pump frequency is comparable to the ion cyclotron frequency. We have explicitly obtained the perturbation dynamics and then examined the impact of pump magnitude on the driven magnetic turbulence using numerical simulation. The results show steepening at small scales with increasing pump amplitude. The compressibility associated with acoustic fluctuations may explain the variation in spectral scaling of solar wind turbulence as observed by Alexandrova et al. (Astrophys. J. 674:1157, 2008).  相似文献   
87.
The internal gravity modes of the Sun are notoriously difficult to detect, and the claimed detection of gravity modes presented by Fossat et al. (Astron. Astrophys.604, A40, 2017) is thus very exciting. Given the importance of these modes for understanding solar structure and dynamics, the results must be robust. While Fossat et al. described their method and parameter choices in detail, the sensitivity of their results to several parameters was not presented. Therefore, we test the sensitivity of the results to a selection of the parameters. The most concerning result is that the detection vanishes when we adjust the start time of the 16.5-year velocity time-series by a few hours. We conclude that this reported detection of gravity modes is extremely fragile and should be treated with utmost caution.  相似文献   
88.
The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun–Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on \(L_{1,2}\) Lagrange point orbits. Sun–Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.  相似文献   
89.
Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain erosive potential, and precipitation concentration in the Mantaro River Basin, in the Peruvian Andes, which is important for agriculture and energy production in Peru. We assumed the Intergovernmental Panel on Climate Change (IPCC) A1B greenhouse gas emission scenario and simulated the global climate change by the HadCM3 global climate model. Due to the steepness of the mountain slopes and the narrowness of the river valley, this study uses the downscaling of the global model simulations by the regional Eta model down to 20-km resolution. The downscaling projections show decrease in the monthly precipitation with respect to the baseline period, especially during the rainy season, between February and April, until the end of the 21st century. Meanwhile, a progressive increase in the monthly evaporation from the baseline period is projected. The Modified Fournier Index (MFI) shows a statistically significant downward trend in the Mantaro River Basin, which suggests a possible reduction in the rain erosive potential. The Precipitation Concentration Index (PCI) shows a statistically significant increasing trend, which indicates increasingly more irregular temporal distribution of precipitation towards the end of the century. The results of this study allow us to conclude that there should be a gradual increase in water deficit and precipitation concentration. Both changes can be negative for agriculture, power generation, and water supply in the Mantaro River Basin in Peru.  相似文献   
90.
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S_2, oil-base mud has certain impact on Rock-Eval S_1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号